source/modelling/dashboard/loader.py
source-code dashboard data-loading caching
File Path: src/modelling/dashboard/loader.py
Purpose: Data access layer for the dashboard. Handles efficient loading of models and datasets using Streamlit caching.
Functions
get_checkpoints_num_signs(checkpoint_path)
Decorator: @st.cache_data
Extracts class count from checkpoint file.
load_cached_checkpoints(checkpoints_dir)
Decorator: @st.cache_data
Scans directory for .pth files.
load_cached_model(checkpoint_path, num_signs)
Decorator: @st.cache_resource
Loads the PyTorch model and sets it to eval mode.
Calls: model.load_model()
get_cached_dataloaders(num_signs)
Decorator: @st.cache_resource
Creates lazy dataloaders for Train/Val/Test splits.
run_inference(_model, _dataloader, device, ...)
Decorator: @st.cache_data
Runs full inference pass on a split.
- Returns:
(y_true, y_pred, y_probs)as numpy arrays.
Related Documentation
- dataloader.py
- app.py - Consumer
File Location: src/modelling/dashboard/loader.py